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Abstract--Models for predicting flow-pattern transitions in steady gas-liquid flow in pipes are summarized 
and presented. These models incorporate the effect of fluid properties, pipe size and the angle of inclination 
in a unified way that is not restricted to a specific range of pipe inclinations. Transition mechanisms are 
presented for each individual boundary and a logical path for systematic determination of the flow 
patterns is suggested. 

I N T R O D U C T I O N  

In the last few years many efforts have been directed towards the development of physical models 
tha ta l low the analytical prediction of the flow patterns and the transition boundaries in 
steady-state two-phase gas-liquid flow. These models try to represent the true physics which is 
observed in experiments. They do, however, simplify the description of the physical phenomena 
so that a mathematical simulation is possible. The main purpose is to construct a completely 
general method that allows the prediction of the flow pattern, once the flow rates, the conduit 
geometry, the inclination angle and the fluid properties are specified. This aim has not been fully 
achieved as yet. A complete physical understanding of the phenomena related to flow-pattern 
transitions is still lacking. Nevertheless, substantial progress has been made in this field. Most of 
the models presented so far are restricted to a specific range of pipe inclinations and thus give only 
a partial view of the transition mechanisms in tubes. 

Models for the following particular situations have been presented: 

--horizontal and slightly inclined tubes (Taitel & Dukler 1976a; Husain & Weisman 
1978; Kadambi 1982; Lin & Hanratty 1986); 

--vertical upward flow (Taitel et al. 1980; Mishima & Ishii 1984; McQuillan & 
Whailey 1985); 

--vertical downward flow (Barnea et al. 1982a); 
--inclined upward flow (Barnea et al. 1985); 
--inclined downward flow (Barnea et al. 1982b). 

These models include a variety of mechanisms that explain the physical basis for the transitions. 
The transition mechanisms presented for horizontal flow differ considerably from those suggested 
for vertical flow. These mechanisms were modified and extended to include the effect of small 
deviations from the horizontal or vertical cases. The main difficulty arises in determining the range 
in which these extensions take place. At a given angle of inclination competing mechanisms may 
arise and it is not always clear which of these mechanisms is operative. 

A comprehensive model for predicting flow-pattern transitions should incorporate the angle of 
inclination in such a way that a smooth change in mechanisms is obtained as the pipe inclination 
varies over all possible angles of inclinations. 

Recently Barnea (1986) presented unified models for the transition from annular to intermittent 
flow and from dispersed bubble flow. The effect of inclination is integratively incorporated in these 
models. 

Based on this work and on previously published models it appears that a satisfactory and 
consistent theory is available that can predict the steady-state transition boundaries for the whole 

I 
M F 13,I--A 



2 D BARNEA 

range of pipe inclinations. Thus it seems that a comprehensive systematic summary of the 
aforementioned models is now appropriate and is the basis for this work. In this summary a smooth 
change in mechanisms is presented as the angle of inclination is changed over all possible upward 
and downward angles of inclination and the problem of "switching" between two different 
mechanisms or selecting the applicable one is eliminated. 

This presentation is not intended to be a review of all previous work but rather presents a 
preferred view of the relevant models that are best suited for the prediction of the flow pattern 
in a concise manner. 

In what follows, transition mechanisms for each individual boundary will be presented. The 
transition criteria will be given for each transition in the form of either algebraic equations or 
dimensionless maps, where the equations are too complex for direct calculation. These equations 
or maps incorporate the effect of flow rates, fluid properties, pipe size and the angle of inclination. 
Thereafter a logical path for a systematic determination of the flow pattern will be presented. 

THE TRANSITION FROM DISPERSED BUBBLES 

Dispersed bubble flow usually appears at very high liquid flow rates. There are, however, 
conditions where small discrete bubbles also appear at low liquid rates. These bubbles are 
sometimes designated as bubble or bubbly flow. The distinction between bubbly and dispersed 
bubble flow is not always clearly visible. Dispersed bubble flow is observed over the whole range 
of pipe inclinations, while the bubbly flow pattern is observed only in vertical and off-vertical flows 
in relatively large diameter tubes. The bubbly flow pattern can exist provided two conditions are 
met: 

(1) The Taylor bubble velocity exceeds the bubble velocity. This condition is 
satisfied in large-diameter pipes (Taitel et al. 1980): 

D > 19 1 (pL - PG)O1 ½ 

where D is the tube diameter, PL and PG are the liquid and gas densities and 
a is the surface tension. 

(2) The angle of inclination fl (from the horizontal) is large enough to prevent 
migration of bubbles to the top wall of the pipe (Barnea et al. 1985): 

where U0 is the bubble rise velocity, CL is the "lift" coefficient and ~ is the 
distortion coefficient of the bubble. Uo is given by the relation (Harmathy 1960) 

P L ~ ,j . [3] 

The average value suggested for C L is 0.8 (Streeter 1961) and ), ranges from 
l.l to 1.5 (based on observation). 

When these two conditions are satisfied, bubbly flow is observed even at low liquid rates were 
turbulent forces do not cause bubble breakup. Taitel et al. (1980) showed that the transition from 
bubbly to slug flow takes place when the gas void fraction exceeds a critical value of ~c = 0.25. This 
transition is given by 

ULs = 1 --~t ~t Uos - 1.53 (1 - ~t) L pt  d sin#, [4] 

where ~t = ~tc = 0.25. The angle fl is positive for upward flow and negative for downward flow. 
At high liquid flow rates dispersed bubbles exist even for a > 0.25, due to turbulence which 

causes bubble breakup and prevents agglomeration. The transition mechanism from the dispersed 
bubbles was first suggested by Taitel et al. (1980) for upward vertical flow and recently modified 
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by Barnea (1986) to account for pipe inclination. The result is 

dc I> [0.725 + 4.15 l 151 
' 

where UM is the mixture velocity and fM is the friction factor based on the mixture velocity. The 
bubble diameter on the transition boundary, dc, is a function of the liquid velocity and the angle 
of inclination. The value of dc is taken as the smallest between dcD and dcB, where dcD is the critical 
bubble size above which the bubble is deformed, 

d c v = 2 [ "  0.40" 1½, 
(PL---- Po)gJ " [6] 

and dcB is the critical bubble size below which migration of bubbles to the upper part of the pipe 
is prevented, 

de, = g cos/ " [7] 

The transition boundary [5] is valid for 0 ~ 0t ~< 0.52. At the upper limit the maximum volumetric 
packing density of the bubbles is reached and coalescence occurs even at high turbulent levels. The 
transition curve that characterizes this condition is 

VLs = Uos [8] rt 

where 0t = 0.52. 
Once the fluid properties and pipe geometry are specified, the theoretical transition curves can 

be plotted on ULS VS UGs coordinates. Such curves are shown in figures 1 and 2 for the air-water 
system at 25°C and 0.1 MPa. Curve B represents the transition from bubbly flow [4], while 
transitions D and G ([5] and [8], respectively) designate the transition from dispersed bubble flow. 
It should be noted that transition B is not observed at all in smaU-diameter pipes, as predicted by 
[1], and at angles of inclination below that predicted by [2]. At relatively large diameter pipes arid 
steep inclinations (figure 1, p = 80, 90, - 80 ,  -90) ,  the bubble flow pattern is seen to exist in two 
zones. In the zone to the left of curve B and below D the presence of deformable bubbles which 
move upward with a zig-zag motion is predicted. In the second zone above curve D and to the 
left of curve G a more finely dispersed bubble system is observed. 

THE STRATIFIED-NONSTRATIFIED TRANSITION 

For horizontal and slightly inclined tubes, Taitel & Dukler (1976a) suggested that transition from 
equilibrium stratified flow is due to Kelvin-Helmholtz instability. They considered stratified flow 
with a finite wave on the surface over which the gas flows. As the gas accelerates over the wave 
crest, the pressure in the gas phase decreases due to the Bernoulli effect and the wave tends to grow. 
On the other hand, the force of gravity acting on the wave tends to cause it to decay. Taitel & 
Dukler (1976a) suggested that the criterion at which the wave will grow and at which the transition 
from stratified flow occurs is 

~2 d"tL-I 

F2 1 Ua d---~L [ 
2G J ~> ! [91 

where F is a Froude number modified by the density ratio: 

Jp PG Uos [lO] 
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Figure 1. How-pattern maps for the whole range of  pipe inclinations. Air-water,  0.1 MPa, 25°C, 
5.1 cm dia. 

The dimensionless variables are defined by 

/~ _ hL, 
L- -~  

A L 

~ AG~ 
A~ = b-- ~ 

OL= 

and 

UL A 

ULS AL 

o o = U o  A 
Uos = ~ '  Ell] 

where h L is the liquid level in equilibrium stratified flow, UL and UG are the liquid and gas velocities, 
AL and AL are the liquid and gas cross-sectional areas and D is the tube diameter. 

I00 

I00 
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Figure 2. Flow-pattern maps for vertical upward and downward tubes. Air-water, 0.1 MPa, 25°C, 
2.54 cm dia. Key as in figure 1. 

Note that all the terms in the square brackets in [9] arc functions only of gL. Once the gas and 
liquid flow rates, fluid properties, inclination angle and pipe size arc specified, the equilibrium liquid 
level can be found by solving the momentum equations for each phase in stratified flow (Tait¢l 
& Dukler 1976a). The equilibrium level is given in terms of X and Y: 

and 

4r  pLU~s (dp) 
x~= F J~ ~ = ~ ~., 

4 r PoU~s (:-'x)o, 
[12a] 

y = (PL -- pG)gsinfl; [12b] 

(dp/dx)s designates the pressure drop of one phase flowing alone in the pipe andfs is the friction 
factor coefficient for a single-phase flow, which can be calculated by using the Moody diagram or 
equivalent correlations. Note that the friction factor fs depends on the flow conditions (turbulent 
or laminar) as well as on the pipe roughness. 

The equilibrium level/~L as a function of X is shown in figure 3 for parameter values of Y. The 
results in figure 3 are for the case of turbulent liquid and gas flow in smooth pipes. It was shown, 
however (Taitcl & Dukler 1976b; Taitel 1977), that to a good approximation, figure 3 can be used 
also for laminar-laminar and turbulent-laminar flows and for rough pipes. The effect of the flow 
conditions and roughness is taken into account in the parameters X and Y. 

The transition criteria given by [9] is represented by curve A on a two-dimensionless map with 
F and nrL as coordinates (figure 4). Once the physical properties, tube diameter and inclination angle 
are specified, the predicted transition line can also be plotted on ULS VS Uos maps. 
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Figure 3. Equilibrium liquid level in stratified flow. 
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Figure 4. Generalized transition boundaries. 

The results for an air-water system were compared with the experimental data of Shoham (1982) 
for the whole range of pipe inclinations and the agreement with the experimental results is 
satisfactory. Note, that small changes in the angle of inclination have a major effect on the 
stratified-nonstratified transition boundary A (figure 1). For slight upwards inclinations the 
stratified flow shrinks substantially (figure 1,/~ = 1 °) and practically vanishes at intermediate angles 
of inclination (figure 1, p = 30 °). This observation is also predicted very well by the theoretical 
transition A, which can also be used to predict the upward angle of inclination at which stratified 
flow disappears (in a specific region of flow rates). Changes in the downward inclination also have 
a profound effect on the stratified flow regime which expands considerably as the angle of 
inclination increases (figure 1, j~ = 0 °, - 1  °, -30°).  This phenomena is also predicted by the 
theoretical transition A. 

Thus transition A is applicable in the whole range of pipe inclinations. However, the boundary 
curve A, may be terminated by either the transition to dispersed bubble (figure 1,/~ = -30)  or by 
the stratified-annular boundary at downward inclinations and low gas flow rates (figure 1, 
J~ = -80°). In other words, in the region above the F vs J~L curve (figure 4) stratified flow does 
not exist over the whole range of pipe inclinations, but in the region below it, subregions of 
dispersed bubble and annular flow may exist. 

THE STRATIFIED-ANNULAR TRANSITION 

Transition mechanism A ([9]) presents a criterion under which finite waves on stratified liquid 
flow are expected to grow resulting in either slug or annular flow. The region below curve A is 
expected to be stable stratified flow. However, at steep downward inclinations another mechanism 
comes into play, by which stable stratified flow is seen to change into annular flow at relatively 
low gas flow rates (Barnea et al. 1982b). This transition boundary is, thus, applicable only within 
the region bounded by curve A. 

At high downward inclination angles the stratified liquid level is small and the liquid velocity 
(UL) is very high. Under these conditions droplets are torn from the wavy turbulent interface and 
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may be deposited on the upper wall, resulting in an annular film. The condition for this type of 
annular flow to take place is (Barnea et al. 1982b) 

U:L >- gD (1 - ~'L)COS 
fL ' [13] 

or in the dimensionless form 

pLgCOS---------- ~ >i 2 (1 --/~L) , [14] 

where fL is the liquid friction factor coefficient and fLS the coefficient that refers to the case where 
the liquid flows alone in the pipe. For rough pipes and large Reynolds numberfL/fLs -- 1, while 
for smooth pipeSfLs/fL = (/)LUL)-", where/~L is the liquid hydraulic diameter and n is a constant 
[equal to 0.2 for turbulent liquid flow and 1 for laminar flow (Taitel 1977)]. 

All quantities on the r.h.s, of [14] depend only on/~L- The curve describing the relation between 
Z and /i'L which satisfies [14] is designated as boundary L in figure 4. In the region below curve 
L stratified flow exists. Transition L is also plotted on a ULS- UGs (figure I, l / =  --80) map and 
shows good agreement with the experimental results. Transition L is shown to appear only at steep 
downward inclinations as stratified flow is changed gradually to annular flow. For the limiting case 
of vertical downward flow, Z - , ~  ([14]), stratified flow disappears completely. For small angles 
of downward inclination and for upward inclinations transition L is outside the region bounded 
by transition A and therefore is not applicable. Thus, transition L can be checked and applied in 
the whole range of pipe inclinations. 

THE TRANSITION FROM ANNULAR TO INTERMITTENT FLOW 

A unified model that incorporates the effect of the angle of inclination was recently proposed 
by Barnea (1986) for the transition from annular to intermittent flow. This transition was assumed 
to occur when the gas core is blocked at any location by the liquid. Blockage of the gas core may 
result from two possible mechanisms: 

(a) instability of the liquid film, due to partial downflow of liquid near the wall, 
causing blockage at the entrance; 

(b) blockage of the gas core as a result of large supply of liquid in the film. 

The condition for the instability of the liquid film in annular flow [mechanism (a)] was obtained 
from the simultaneous solution of the following dimensionless equations: 

and 

1 + 75 ~L 1 
- -- x "2 [151 

Y = (1 --gL) ~ L  ~3L 

y~> 2--3~L 
3 3 X2; [16] 

X and Y are defined as in [12a,b]. Equation [15] gives the steady-state solution for the liquid holdup, 
aL, in annular flow. The value of UL that satisfies the condition for the film instability is obtained 
from [16]. 

Blockage of the gas core by liquid lumps [mechanism (b)] will occur when the liquid supply in 
the film is large enough to provide the liquid needed to bridge the pipe. The condition for slugging 
was shown to be (Barnea 1986) 

AL ~L 
A . ~  -- ~ O.5, [17] 

where ~ is the minimal Hquid holdup within the formed liquid slug that will allow competent 
bridging of the gas passage. This minimum value is related to the maximum bubble volumetric 
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Figure 5. Generalized map for annular intermittent transition. 

packing in the liquid slug and equals approx. 0.48. Lower values of Rs will make slugging impossible 
due to the high gas void fraction. Note, however, that this minimum value of P~m = 0.48 is the 
actual slug holdup, P~, on the annular-intermittent transition boundary in a very wide range of 
flow conditions. The calculation of Rs is discussed later in relation to [18]. 

The transition boundaries are shown in figure 5 in terms of the dimensionless coordinates X and 
Y. Solution of [15] and [16] yields the locus of X, Y pairs (line "a")  along the stability curve 
[transition mechanism (a)]. The region below this curve is in stable annular flow, while the region 
above it yields unstable conditions, or intermittent flow. Equation [15] with the value of 
~t L = 0.5 R~ yields the condition where blockage occurs [mechanism (b)]. Equation [15] is plotted 
for a constant value of ~t L = 0.24 within the stable zone (the "b" lines). The region below curve 
"a" and to the left of curve "b" corresponds to annular flow. 

The two mechanisms (a) and (b) mentioned above are both based on the characteristic film 
structure of annular flow. A smooth change in mechanisms is obtained either when the flow rates 
change, or when the pipe inclination varies over all possible angles. 

The above transition criteria between annular and intermittent flow are mapped in figures 1 and 
2 as transition boundary J and show good agreement with the experimental data. Note that the 
J line may be terminated by the stratified-nonstratified line (figure 4, fl = 0 °, - l °, - 30 °). Thus, 
the above proposed model is applicable only outside the range of stable stratified flow. 

SUBREGIONS WITHIN THE INTERMITTENT FLOW 

The intermittent pattern is usually subdivided into elongated bubble, slug and churn flows. 
Basically, these three flow patterns have the same configuration with respect to the distribution of 
the gas and the liquid interfaces. In these flow patterns slugs of liquid are separated by large 
bullet-shaped bubbles. In slug flow the liquid bridges are aerated by small gas bubbles. The 
elongated bubble pattern is considered the limiting-case of slug flow when the liquid slug is free 
of entrained bubbles (Barnea & Brauner 1985), while the churn flow takes place when the gas void 
fraction within the liquid slug reaches a maximum value above which occasional collapse of the 
liquid slug occurs. 

Recently Barnea & Brauner (1985) proposed a physical model for the prediction of gas holdup 
within the liquid slug (~t, or l -R~) .  It was suggested that the gas holdup on the transition line 
from dispersed bubbles is the maximum holdup that the liquid slug can accommodate as fully 
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dispersed bubbles at a given mixture velocity UM ( = UGs + ULS). Thus, curves of constant UM 
within the intermittent region represent the locus where cts is constant and is equal to the holdup 
of the dispersed bubble pattern at the transition boundary. Once the fluid properties and pipe size 
are set, as can be obtained from [5] to yield 

" /2fM 2 _,s_- L,,,: o.7.,,]; [18] 

when ~t, ffi 0 the elongated bubble--slug transition is obtained (Barnea & Brauner 1985). When the 
gas holdup within the liquid slug reaches the maximum bubble volumetric packing (at s = 0.52), the 
continuity of the very aerated liquid slug is destroyed by bubble agglomeration and the formation 
of regions of high gas concentration within the liquid slug, resulting in transition to churn flow 
(Brauner & Barnea 1986). 

The slug-churn transition 

Churn flow was considered as a typical flow pattern in upward vertical and off-vertical gas-liquid 
flow. The above-mentioned model for slug-churn transition provides a quantitative explanation 
for the vanishing of churn flow in inclined pipes. Inclination of the pipe from the vertical causes 
the slug-churn boundary ([18] with ~q = 0.52) and the annular-churn boundary (transition J) to 
move toward each other; and the churn flow shrinks and ultimately vanishes at relatively low liquid 
flow rates (figure 1). At very high liquid flow rates a region of intermittent flow with aq >/0.52 is 
observed in the whole range of pipe inclinations (figure 1). Although this region is usually not 
considered as the typical churn flow in experimental investigations, Brauner & Barnea (1986) 
suggested the possibility of designating this region also as churn flow. 

The definition of churn flow as highly aerated slugs with repeated destruction of liquid continuity 
in the slug (0q i> 0.52) is somewhat different from the usual association of churn flow with 
oscillatory motion of the liquid slug. There is, however, no contradiction between the two criteria 
since the oscillatory motion is caused by the high void fraction in the slug. However, the oscillatory 
motion is clearly observed only in vertical pipes and relatively low liquid flow rates, where 
gravity-dominated conditions exist. Yet the criteria of ~s = 0.52, which cause destruction of the 
liquid slug, may be adopted as the criteria for churn flow in the whole range of pipe inclinations 
and flow rates. 

The elongated bubble-slug transition 

Slug flow which is free of entrained bubbles is considered as the elongated bubble flow pattern. 
The elongated bubble-slug transition is obtained by [18] with the limiting value of 0q = 0. Equation 
[18] predicts the equilibrium gas void fraction within the main body of the liquid slug. However, 
at relatively high gas flow rates, especially in upward inclined and vertical flows, a local void 
concentration is developed behind the Taylor bubble due to the vigorous mixing region of the 
falling liquid film penetrating the liquid slug. Thus, the identification of elongated bubbles in 
upward flow may be ambiguous and not always consistent with the above definition. Because of 
this difficulty and because traditionally the distinction between elongated bubbles and slug was 
considered only in horizontal and slightly inclined flows, the predicted transition boundary is 
designated only for the horizontal case and is shown as curve N in figure 1 (fl = 0). 

SUBREGIONS IN THE STRATIFIED FLOW 

Two subpatterns are usually defined in stratified flow: stratified smooth and stratified wavy. 
Waves may be formed on a smooth liquid interface due to the action of the gas flowing over the 
liquid (typical of horizontal tubes) or as a result of the action of gravity, even in the absence of 
gas flow (typical in downward inclined pipes). 

Taitel & Dukler (1976a) suggested the following condition for wave generation as a result of the 
"wind" effect: 

Uc/> [-4 1,'L ( p L  - -  po)p L -~ P-~ ~ cosp] ½, [191 
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PREDICTING FLOW-PATI'E~LN TRANSITIONS 1 ! 

or in the dimensionless form 

>/ • ~ , [201 

where vt is the liquid kinematic viscosity, s is a sheltering coefficient and K is the product of the 
modified Froude number and the square root of the superficial Reynolds number of the liquid: 

r [ 2 1 ]  

E$ = L(oE - L 

All quantities in square brackets in [20] depend only on arL- The transition between stratified smooth 
and stratified wavy resulting from the "wind" effect is mapped on a K vs are coordinate system and 
is shown in figure 4 as curve C. 

As has been mentioned, waves can be developed on liquid flowing in downward slopes, even in 
the absence of interfacial shear with gas flow. For turbulent flow in smooth pipes Barnea et al. 
(1982b) adopted the following criteria for wave inception: 

UL 
Fr = - -  >/1.5 [22] 

o r  

ULS ,'iL 
W = ~ i> 1.5 x/~L ~-- [23] 

The r.h.s, of [23] depends only on arE, thus the locus of W vs are which satisfies [23] is the stratified 
smooth-stratified wavy transition boundary and is shown as curve M in figure 4. 

Curves C and M are also plotted on UEs vs UGS coordinates for the air-water system at 25°C 
and 0.1 MPa (figure l, fl = 0, - l) and together give the composite stratified smooth--stratified wavy 
boundary. Note that at large gas flow rates transition M, where waves are formed due to the action 
of gravity, is terminated by transition C which represents the condition where waves are formed 
by interfacial shear. At inclination angles > 5 ° both theory and experiments show that waves exist 
in the whole range of stratified flow. 

THE UNIFIED MODEL 

Transition mechanisms for each individual boundary and its applicability for the whole range 
of pipe inclinations have now been presented. These mechanisms have been used to arrive at 
operative equations or dimensionless maps which can be used to predict the transition boundaries 
between the flow patterns. These equations or maps incorporate the effect of  flow rates, fluid 
properties, pipe size and the angle of inclination. A logical path for the systematic determination 
of the various flow patterns is presented by the flow chart shown in figure 6. 

The flow patterns and the transition boundaries are shown in UGs--ULs space for the air-water 
system flowing in a 5 cm dia pipe (figure 1). The results of the model compare favorably with 
experimental data for the whole range of pipe inclinations. In the special case of tubes of small 
diameter where condition [l] is not satisfied, no bubbly flow can exist below curve D in vertical 
and off-vertical flows. This phenomena is also observed experimentally and is shown on the flow 
pattern map for a 2.5 cm dia tube (figure 2). 

It should be noted that even when the mechanisms seem to be understood arriving at useful 
equations is not always a direct process and the final equations require estimations regarding some 
factors which enter into the mechanisms. For example, the transition mechanisms from separated 
flow (stratified or annular) require the inclusion of the friction factor f, at the gas-liquid interface. 
The available relationships for f are largely empirical and limited to specific flow conditions. For 
the case of stratified flow f, was assumed to equal the gas friction factor coefficient,f G, for the whole 
range of pipe inclinations (Taitel & Dukler 1976a), although the choice off i  =fG applies mainly 
to separated smooth flow. For the case of annular flow, Wallis' 0969) correlation forfi was used 
for the whole range of pipe inclinations and flow conditions (Barnea 1986), although it applies to 
symmetric annular flow with high gas flow rates. Presently there are no confirmed data that 
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correlate fi with the wavy structure of the interface which can be expressed by the relative phase 
velocity, the film thickness and the pipe inclination. Therefore use of the available correlations for 
f was made for the whole range of inclinations and flow conditions with some sacrifice of accuracy. 
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